The Effects of Capital Requirements on Good and Bad Risk-Taking

N. Aaron Pancost & Roberto Robatto

University of Texas at Austin, McCombs School of Business University of Wisconsin-Madison and University of Southern California

September 6, 2018

 Many regulatory changes following 2008 crisis, including tighter capital requirements (Basel III).

- Many regulatory changes following 2008 crisis, including tighter capital requirements (Basel III).
- Some academics and regulators argue that capital requirements should be tightened even more (Admati and Hellwig, 2013; Kashkari, 2016)

- Many regulatory changes following 2008 crisis, including tighter capital requirements (Basel III).
- Some academics and regulators argue that capital requirements should be tightened even more (Admati and Hellwig, 2013; Kashkari, 2016)
- ► Arguments against tighter capital requirements

- Many regulatory changes following 2008 crisis, including tighter capital requirements (Basel III).
- Some academics and regulators argue that capital requirements should be tightened even more (Admati and Hellwig, 2013; Kashkari, 2016)
- ▶ Arguments against tighter capital requirements
 - ► Lower supply of credit [not in this paper]

- Many regulatory changes following 2008 crisis, including tighter capital requirements (Basel III).
- Some academics and regulators argue that capital requirements should be tightened even more (Admati and Hellwig, 2013; Kashkari, 2016)
- ▶ Arguments against tighter capital requirements
 - ► Lower supply of credit [not in this paper]
 - ► Lower supply of socially-valuable liquidity [not in this paper]

- Many regulatory changes following 2008 crisis, including tighter capital requirements (Basel III).
- Some academics and regulators argue that capital requirements should be tightened even more (Admati and Hellwig, 2013; Kashkari, 2016)
- ▶ Arguments against tighter capital requirements
 - ► Lower supply of credit [not in this paper]
 - ► Lower supply of socially-valuable liquidity [not in this paper]
 - ► Reduction of socially-valuable risk taking of firms [this paper]

▶ Our argument:

Financial regulation affects the risk-taking capacity of the private sector

Our argument:

Financial regulation affects the risk-taking capacity of the private sector

▶ Take as given full deposit insurance; motivation outside the model

(Begenau, 2016; Davydiuk, 2017; Dempsey, 2017; ...)

► Our argument:

Financial regulation affects the risk-taking capacity of the private sector

- ➤ Take as given full deposit insurance; motivation outside the model (Begenau, 2016; Davydiuk, 2017; Dempsey, 2017; ...)
 - Avoid runs

▶ Our argument:

Financial regulation affects the risk-taking capacity of the private sector

- ➤ Take as given full deposit insurance; motivation outside the model (Begenau, 2016; Davydiuk, 2017; Dempsey, 2017; ...)
 - Avoid runs
- ► Implies the usual benefit of tighter capital requirements: reduce excessive risk-taking by banks.

Firms use deposits to self-insure idiosyncratic shocks.

- Firms use deposits to self-insure idiosyncratic shocks.
- ▶ Tighter capital requirements reduce the return on deposits.

- Firms use deposits to self-insure idiosyncratic shocks.
- ▶ Tighter capital requirements reduce the return on deposits.
- ▶ A lower return on deposits reduces the ability to self-insure and thus the (good) risk-taking by firms.

- Firms use deposits to self-insure idiosyncratic shocks.
- ▶ Tighter capital requirements reduce the return on deposits.
- ▶ A lower return on deposits reduces the ability to self-insure and thus the (good) risk-taking by firms.
- ▶ We balance this cost of capital requirements against a deadweight loss from bank default, i.e. "bad" risk-taking.

Environment

▶ Discrete time, infinite horizon model

Environment

- Discrete time, infinite horizon model
- ► Single good
 - Consumed
 - Invested

Environment

- Discrete time, infinite horizon model
- ► Single good
 - Consumed
 - Invested
- Players
 - Firms (run by managers, subject to an agency friction)
 - ▶ Banks (~ technology)
 - Households (own banks and firms, provide labor)
 - Government (provides deposit insurance)

Firms

Maximize

$$V_{t}^{m}\left(x_{t}^{i}\right) = \max_{c_{t}^{i}, d_{t}^{i}, l_{t}^{i}} \theta \log c_{t}^{i} + \beta^{m} E_{t} \left\{ \left(1 - \alpha\right) V_{t+1}^{m}\left(x_{t+1}^{i}\right) + \alpha V^{\text{exit}}\left(x_{t+1}^{i}\right) \right\}$$

Firms

Maximize

$$V_{t}^{m}\left(x_{t}^{i}\right) = \max_{c_{t}^{i},d_{t}^{i},l_{t}^{i}}\theta\log c_{t}^{i} + \beta^{m}E_{t}\left\{\left(1-\alpha\right)V_{t+1}^{m}\left(x_{t+1}^{i}\right) + \alpha V^{\text{exit}}\left(x_{t+1}^{i}\right)\right\}$$

subject to

$$\underbrace{c_t^i}_{\text{consumption}} + \underbrace{d_t^i}_{\text{deposits}} \leq \underbrace{x_t^i}_{\text{wealth}}$$

$$x_{t+1}^{i} = \left(1 - \underbrace{\tau_{t+1}}_{\text{tax}}\right) \left[\underbrace{\left(\underbrace{z_{t+1}^{i} - w_{t}}\right) I_{t}^{i}}_{\text{return from project}} + \underbrace{R_{t}^{d} d_{t}^{i}}_{\text{return deposits}}\right]$$

Firms

Maximize

$$V_{t}^{m}\left(x_{t}^{i}\right) = \max_{c_{t}^{i},d_{t}^{i},l_{t}^{i}}\theta\log c_{t}^{i} + \beta^{m}E_{t}\left\{\left(1-\alpha\right)V_{t+1}^{m}\left(x_{t+1}^{i}\right) + \alpha V^{\text{exit}}\left(x_{t+1}^{i}\right)\right\}$$

subject to

$$\underbrace{c_t^i}_{\text{consumption}} + \underbrace{d_t^i}_{\text{deposits}} \leq \underbrace{x_t^i}_{\text{wealth}}$$

$$x_{t+1}^{i} = \left(1 - \underbrace{\tau_{t+1}}_{\text{tax}}\right) \left[\underbrace{\left(\frac{z_{t+1}^{i} - w_{t}}{z_{t}^{i}}\right) I_{t}^{i}}_{\text{return from project}} + \underbrace{R_{t}^{d} d_{t}^{i}}_{\text{return deposits}}\right]$$

- Project
 - ▶ $z_{t+1}^i \in \{0, \bar{z}\}$: idiosyncratic productivity shock
 - w_t : wage (cannot be contingent on z_{t+1}^i)
 - ► Iⁱ₊: labor

Firms are owned by households.

- Firms are owned by households.
- ▶ Each period with probability α the firm exits and pays a fraction κ of its net worth to the manager and 1κ to households.

- Firms are owned by households.
- ▶ Each period with probability α the firm exits and pays a fraction κ of its net worth to the manager and 1κ to households.
- ightharpoonup Households start a measure lpha of new firms with start-up funds proportional to aggregate net worth of all firms.

- Firms are owned by households.
- ▶ Each period with probability α the firm exits and pays a fraction κ of its net worth to the manager and 1κ to households.
- ightharpoonup Households start a measure lpha of new firms with start-up funds proportional to aggregate net worth of all firms.
- ▶ We take the limit as $\theta, \kappa \to 0$ and $\beta^m \to 1$.

- Firms are owned by households.
- ▶ Each period with probability α the firm exits and pays a fraction κ of its net worth to the manager and 1κ to households.
- ightharpoonup Households start a measure lpha of new firms with start-up funds proportional to aggregate net worth of all firms.
- ▶ We take the limit as $\theta, \kappa \to 0$ and $\beta^m \to 1$.
 - ► Ensures that managers' first-order conditions hold even as they consume a vanishing fraction of output.

▶ Have their own productive assets k_t , separate from entrepreneur's projects.

- ▶ Have their own productive assets k_t , separate from entrepreneur's projects.
- ▶ Aggregate capital is fixed at \bar{k} , price q_t .

- \blacktriangleright Have their own productive assets k_t , separate from entrepreneur's projects.
- Aggregate capital is fixed at \bar{k} , price q_t .
- ightharpoonup Created at time t with equity n_t , liquidated at t+1

$$\max_{k_{t},d_{t}} E_{t} \int \left\{ \varepsilon k_{t} \left(A_{t+1} + q_{t+1} \right) - R_{t}^{d} d_{t} \right\}^{+} dF_{t+1} \left(\varepsilon \right)$$

- \blacktriangleright Have their own productive assets k_t , separate from entrepreneur's projects.
- Aggregate capital is fixed at \bar{k} , price q_t .
- ightharpoonup Created at time t with equity n_t , liquidated at t+1

$$\max_{k_{t},d_{t}} E_{t} \int \left\{ \varepsilon k_{t} \left(A_{t+1} + q_{t+1} \right) - R_{t}^{d} d_{t} \right\}^{+} dF_{t+1} \left(\varepsilon \right)$$

subject to

$$q_t k_t = n_t + d_t$$
 (budget constraint) $rac{equity}{assets} = rac{n_t}{q_t k_t} \geq \zeta$ (capital requirement)

- \blacktriangleright Have their own productive assets k_t , separate from entrepreneur's projects.
- Aggregate capital is fixed at \bar{k} , price q_t .
- ▶ Created at time t with equity n_t , liquidated at t+1

$$\max_{k_{t},d_{t}} E_{t} \int \left\{ \varepsilon k_{t} \left(A_{t+1} + q_{t+1} \right) - R_{t}^{d} d_{t} \right\}^{+} dF_{t+1} \left(\varepsilon \right)$$

subject to

$$q_t k_t = n_t + d_t$$
 (budget constraint) $rac{equity}{assets} = rac{n_t}{q_t k_t} \geq \zeta$ (capital requirement)

▶ **(**: capital requirement chosen by the government

- \blacktriangleright Have their own productive assets k_t , separate from entrepreneur's projects.
- ▶ Aggregate capital is fixed at \bar{k} , price q_t .
- ightharpoonup Created at time t with equity n_t , liquidated at t+1

$$\max_{k_{t},d_{t}} E_{t} \int \left\{ \varepsilon k_{t} \left(A_{t+1} + q_{t+1} \right) - R_{t}^{d} d_{t} \right\}^{+} dF_{t+1} \left(\varepsilon \right)$$

subject to

$$q_t k_t = n_t + d_t$$
 (budget constraint) $rac{equity}{assets} = rac{n_t}{q_t k_t} \geq \zeta$ (capital requirement)

- ▶ **(**: capital requirement chosen by the government
- \triangleright ε_{t+1} : idiosyncratic shocks to banks' productivity

Households

▶ Own the banks and firms, and supply labor to firms.

Households

- Own the banks and firms, and supply labor to firms.
- Maximize

$$V_{t}^{h}(a_{t}) = \max_{c_{t}, l_{t}, n_{t}} c_{t} - \nu_{1} \frac{l_{t}^{1 + \frac{1}{\nu_{2}}}}{1 + \frac{1}{\nu_{2}}} + \beta E_{t} V_{t+1}^{h}(a_{t+1})$$

subject to

$$\begin{array}{cccc} c_t + n_t & \leq & a_t + w_t I_t \\ a_{t+1} & = & \underbrace{n_t R_{t+1}^{\textit{E}} \left(1 - \tau_{t+1}\right)}_{\text{after-tax return on bank equity}} + \underbrace{\pi_{t+1}}_{\text{profits of exiting firms}} \end{array}$$

Households

- ▶ Own the banks and firms, and supply labor to firms.
- Maximize

$$V_{t}^{h}(a_{t}) = \max_{c_{t}, l_{t}, n_{t}} c_{t} - \nu_{1} \frac{\int_{t}^{1 + \frac{1}{\nu_{2}}}}{1 + \frac{1}{\nu_{2}}} + \beta E_{t} V_{t+1}^{h}(a_{t+1})$$

subject to

$$c_t + n_t \le a_t + w_t I_t$$
 $a_{t+1} = \underbrace{n_t R_{t+1}^E \left(1 - au_{t+1}
ight)}_{ ext{after-tax return on bank equity}} + \underbrace{\pi_{t+1}}_{ ext{profits of exiting firms}}$

Labor supply curve:

$$w_t = \nu_1 \left(I_t \right)^{\frac{1}{\nu_2}}$$

ightharpoonup Collect taxes T_{t+1} to pay for deposit insurance disbursement

- \triangleright Collect taxes T_{t+1} to pay for deposit insurance disbursement
- ▶ A bank defaults if $\varepsilon_{t+1} < \underline{\varepsilon}_{t+1}$, so

$$T_{t+1} = \int_{-\infty}^{\varepsilon_{t+1}} \left[\underbrace{R_t^d d_t}_{\text{owed to depositors}} - \underbrace{\varepsilon k_t \left(A_{t+1} + q_{t+1} \right)}_{\text{collected from banks}} \right] dF_{t+1} \left(\varepsilon \right)$$

$$+ \underbrace{\frac{\lambda}{2} \left[\int_{-\infty}^{\varepsilon_{t+1}} \left[R_t^d d_t - \varepsilon k_t \left(A_{t+1} + q_{t+1} \right) \right] dF_{t+1} \left(\varepsilon \right) \right]^2}_{\text{deadweight loss}}$$

- \triangleright Collect taxes T_{t+1} to pay for deposit insurance disbursement
- ▶ A bank defaults if $\varepsilon_{t+1} < \underline{\varepsilon}_{t+1}$, so

$$\begin{split} T_{t+1} &= \int_{-\infty}^{\underline{\varepsilon}_{t+1}} \left[\underbrace{R_t^d d_t}_{\text{owed to depositors}} - \underbrace{\varepsilon k_t \left(A_{t+1} + q_{t+1} \right)}_{\text{collected from banks}} \right] dF_{t+1} \left(\varepsilon \right) \\ &+ \underbrace{\frac{\lambda}{2} \left[\int_{-\infty}^{\underline{\varepsilon}_{t+1}} \left[R_t^d d_t - \varepsilon k_t \left(A_{t+1} + q_{t+1} \right) \right] dF_{t+1} \left(\varepsilon \right) \right]^2}_{\text{deadweight loss}} \end{split}$$

- Deadweight loss:
 - $\rightarrow \lambda > 0$ to capture negative effects of banks' bad risk-taking

- \triangleright Collect taxes T_{t+1} to pay for deposit insurance disbursement
- ▶ A bank defaults if $\varepsilon_{t+1} < \underline{\varepsilon}_{t+1}$, so

$$\begin{split} T_{t+1} &= \int_{-\infty}^{\underline{\varepsilon}_{t+1}} \left[\underbrace{R_t^d d_t}_{\text{owed to depositors}} - \underbrace{\underline{\varepsilon} k_t \left(A_{t+1} + q_{t+1} \right)}_{\text{collected from banks}} \right] dF_{t+1} \left(\underline{\varepsilon} \right) \\ &+ \underbrace{\frac{\lambda}{2} \left[\int_{-\infty}^{\underline{\varepsilon}_{t+1}} \left[R_t^d d_t - \underline{\varepsilon} k_t \left(A_{t+1} + q_{t+1} \right) \right] dF_{t+1} \left(\underline{\varepsilon} \right) \right]^2}_{\text{deadweight loss}} \end{split}$$

- Deadweight loss:
 - $\rightarrow \lambda > 0$ to capture negative effects of banks' bad risk-taking
 - \rightarrow $\lambda = 0 \Rightarrow$ capital requirements are never optimal.

Equilibrium definition

- ► Firm managers maximize utility
- ▶ Banks maximize profits
- ► Households maximize utility
- Government budget constraint holds every period
- Labor, deposit, equity, and goods markets clear

Define

$$\Delta_{t+1}^{i} \equiv \left(z_{t+1}^{i} - w_{t}\right) I_{t} + R_{t}^{d} d_{t}$$

which is the marginal utility of wealth.

Define

$$\Delta_{t+1}^{i} \equiv \left(z_{t+1}^{i} - w_{t}\right) I_{t} + R_{t}^{d} d_{t}$$

which is the marginal utility of wealth.

▶ Labor demand *l_t*:

return hiring an extra worker

$$0 = E_t \left\{ \frac{\overbrace{z_{t+1}^i - w_t}^i}{\Delta_{t+1}^i} \right\}$$

Define

$$\Delta_{t+1}^{i} \equiv \left(z_{t+1}^{i} - w_{t}\right) I_{t} + R_{t}^{d} d_{t}$$

which is the marginal utility of wealth.

▶ Labor demand *l_t*:

return hiring an extra worker

$$0 = E_t \left\{ \frac{\overbrace{z_{t+1}^i - w_t}^i}{\Delta_{t+1}^i} \right\}$$

▶ If $z_{t+1}^i = \bar{z}$ is not random, then $w_t = \bar{z}$ and firms have no profits to return to households.

Define

$$\Delta_{t+1}^{i} \equiv \left(z_{t+1}^{i} - w_{t}\right) I_{t} + R_{t}^{d} d_{t}$$

which is the marginal utility of wealth.

▶ Labor demand I_t :

return hiring an extra worker

$$0 = E_t \left\{ \frac{\overbrace{z_{t+1}^i - w_t}^i}{\Delta_{t+1}^i} \right\}$$

- ▶ If $z_{t+1}^i = \bar{z}$ is not random, then $w_t = \bar{z}$ and firms have no profits to return to households.
- ▶ If z_{t+1}^i is random, then $w_t < E_t \left\{ z_{t+1}^i \right\}$ and firms are profitable on average.

▶ Suppose z_{t+1}^i is not random (no good risk-taking).

- ▶ Suppose z_{t+1}^i is not random (no good risk-taking).
- ▶ Suppose $\lambda = 0$ (no deadweight loss from default).

- ▶ Suppose z_{t+1}^i is not random (no good risk-taking).
- ▶ Suppose $\lambda = 0$ (no deadweight loss from default).
- ▶ Then: capital requirements have no real effects on the economy.

- ▶ Suppose z_{t+1}^i is not random (no good risk-taking).
- ▶ Suppose $\lambda = 0$ (no deadweight loss from default).
- ▶ Then: capital requirements have no real effects on the economy.
- Reason:

- ▶ Suppose z_{t+1}^i is not random (no good risk-taking).
- ▶ Suppose $\lambda = 0$ (no deadweight loss from default).
- ▶ Then: capital requirements have no real effects on the economy.
- Reason:
 - ▶ Depositors at failed banks made whole through deposit insurance.

- ▶ Suppose z_{t+1}^i is not random (no good risk-taking).
- ▶ Suppose $\lambda = 0$ (no deadweight loss from default).
- ▶ Then: capital requirements have no real effects on the economy.
- Reason:
 - ▶ Depositors at failed banks made whole through deposit insurance.
 - Taxes to pay for deposit insurance exactly offset losses from failed banks.

Now suppose z_{t+1}^i is random (but $\lambda = 0$ still).

- Now suppose z_{t+1}^i is random (but $\lambda = 0$ still).
- ► Taxes are still offsetting: no real effects of bank default.

- Now suppose z_{t+1}^i is random (but $\lambda = 0$ still).
- ► Taxes are still offsetting: no real effects of bank default.
- \triangleright As capital requirements rise, banks reduce deposits and R_t^d falls.

- Now suppose z_{t+1}^i is random (but $\lambda = 0$ still).
- ► Taxes are still offsetting: no real effects of bank default.
- \triangleright As capital requirements rise, banks reduce deposits and R_t^d falls.
- ▶ Lower R_t^d induces firms to reduce their labor demand.

- Now suppose z_{t+1}^i is random (but $\lambda = 0$ still).
- Taxes are still offsetting: no real effects of bank default.
- \triangleright As capital requirements rise, banks reduce deposits and R_t^d falls.
- ▶ Lower R_t^d induces firms to reduce their labor demand.
 - ▶ Lower labor demand leads to reduced output, wealth, and welfare.

- Now suppose z_{t+1}^i is random (but $\lambda = 0$ still).
- Taxes are still offsetting: no real effects of bank default.
- \triangleright As capital requirements rise, banks reduce deposits and R_t^d falls.
- ▶ Lower R_t^d induces firms to reduce their labor demand.
 - ▶ Lower labor demand leads to reduced output, wealth, and welfare.
- ▶ When $\lambda > 0$, increasing capital requirements also reduces the deadweight loss from bank default.

Capital requirements with stochastic \mathbf{z}_{t+1}^{i}

- ▶ Increasing capital requirements ζ
 - ▶ \Rightarrow Return on deposits $R_t^d \downarrow$

Capital requirements with stochastic \mathbf{z}_{t+1}^{i}

- \blacktriangleright Increasing capital requirements ζ
 - ▶ \Rightarrow Return on deposits $R_t^d \downarrow$
 - ▶ Volatility of firms' wealth in $t+1 \uparrow$

$$x_{t+1}^{i} = \left(1 - \underbrace{\tau_{t+1}}_{\text{tax}}\right) \left[\underbrace{\left(z_{t+1}^{i} - w_{t}\right) I_{t}}_{\text{return from project}} + \underbrace{R_{t}^{d} d_{t}}_{\text{(safe)}}\right]$$

Capital requirements with stochastic \mathbf{z}_{t+1}^{i}

- Increasing capital requirements ζ
 - ▶ \Rightarrow Return on deposits $R_t^d \downarrow$
 - ▶ Volatility of firms' wealth in $t+1 \uparrow$

$$x_{t+1}^i = \left(1 - \underbrace{\tau_{t+1}}_{\text{tax}}\right) \left[\underbrace{\left(z_{t+1}^i - w_t\right) I_t}_{\text{return from project}} + \underbrace{R_t^d d_t}_{\text{(safe)}}\right]$$

▶ Labor demand $I_t \downarrow \Rightarrow$ Wealth in t + 1: $X_{t+1} \downarrow$

Assume

$$\varepsilon_{t+1} \sim \log \mathbb{N}(\sigma)$$

Assume

$$egin{aligned} arepsilon_{t+1} &\sim \log \mathbb{N}\left(\sigma
ight) \ z' &\sim \left\{egin{array}{ll} 0 & ext{probability } 1-p_z \ rac{1}{p_z} & ext{probability } p_z \end{array}
ight. \end{aligned}$$

Assume

$$arepsilon_{t+1} \sim \log \mathbb{N}\left(\sigma
ight)$$
 $z' \sim \left\{egin{array}{l} 0 & ext{probability } 1-p_z \ rac{1}{p_z} & ext{probability } p_z \end{array}
ight.$

▶ Set A, σ , and ν_1 to match

steady-state consumption
$$=1$$
 bank default probability when $\zeta=10\%=10\%$ deposit premium $\frac{1}{\beta}-R^d=2\%$

other parameters

• With $\lambda = 0$, tighter capital requirements only reduce labor demand.

▶ With $\lambda = 0$, tighter capital requirements only reduce labor demand.

- ▶ With $\lambda = 0$, tighter capital requirements only reduce labor demand.
- ▶ With $\lambda > 0$, they also reduce deadweight loss from bank default.

Pancost & Robatto

- ▶ With $\lambda = 0$, tighter capital requirements only reduce labor demand.
- With $\lambda > 0$, they also reduce deadweight loss from bank default.

Pancost & Robatto

- ▶ With $\lambda = 0$, tighter capital requirements only reduce labor demand.
- With $\lambda > 0$, they also reduce deadweight loss from bank default.

- ▶ With $\lambda = 0$, tighter capital requirements only reduce labor demand.
- With $\lambda > 0$, they also reduce deadweight loss from bank default.

Labor Demand

- ▶ With $\lambda = 0$, tighter capital requirements only reduce labor demand.
- With $\lambda > 0$, they also reduce deadweight loss from bank default.

Default Probability

17 / 21

Deposit Return

Welfare

• With $\lambda = 0$, there is no benefit to capital requirements, only a cost.

Welfare

▶ With $\lambda = 0$, there is no benefit to capital requirements, only a cost.

Welfare

- ▶ With $\lambda = 0$, there is no benefit to capital requirements, only a cost.
- ▶ With $\lambda > 0$, the cost is balanced against a reduced deadweight loss.

• Assume $\lambda = 0$ (no bad risk-taking).

- Assume $\lambda = 0$ (no bad risk-taking).
- \triangleright Frisch elasticity ν_2 is key for welfare costs of capital requirements.

- Assume $\lambda = 0$ (no bad risk-taking).
- \triangleright Frisch elasticity ν_2 is key for welfare costs of capital requirements.
- $\nu_2 \to \infty$: labor fully flexible, wage fixed

- Assume $\lambda = 0$ (no bad risk-taking).
- ▶ Frisch elasticity ν_2 is key for welfare costs of capital requirements.
- $\triangleright \nu_2 \to \infty$: labor fully flexible, wage fixed
 - Increasing capital requirements has large negative effects on welfare

- Assume $\lambda = 0$ (no bad risk-taking).
- ▶ Frisch elasticity ν_2 is key for welfare costs of capital requirements.
- $\triangleright \nu_2 \to \infty$: labor fully flexible, wage fixed
 - ▶ Increasing capital requirements has large negative effects on welfare
- \triangleright $\nu_2 \rightarrow 0$: labor fixed, wage fully flexible

- Assume $\lambda = 0$ (no bad risk-taking).
- ▶ Frisch elasticity ν_2 is key for welfare costs of capital requirements.
- $\triangleright \nu_2 \to \infty$: labor fully flexible, wage fixed
 - ▶ Increasing capital requirements has large negative effects on welfare
- \triangleright $\nu_2 \rightarrow 0$: labor fixed, wage fully flexible
 - Increasing capital requirements has no negative effect on welfare

- Assume $\lambda = 0$ (no bad risk-taking).
- ▶ Frisch elasticity ν_2 is key for welfare costs of capital requirements.
- $\triangleright \nu_2 \to \infty$: labor fully flexible, wage fixed
 - ▶ Increasing capital requirements has large negative effects on welfare
- \triangleright $\nu_2 \rightarrow 0$: labor fixed, wage fully flexible
 - Increasing capital requirements has no negative effect on welfare
- ▶ In either case, $R^d < 1/\beta$

- Assume $\lambda = 0$ (no bad risk-taking).
- ightharpoonup Frisch elasticity ν_2 is key for welfare costs of capital requirements.
- $\triangleright \nu_2 \to \infty$: labor fully flexible, wage fixed
 - ▶ Increasing capital requirements has large negative effects on welfare
- \triangleright $\nu_2 \rightarrow 0$: labor fixed, wage fully flexible
 - Increasing capital requirements has no negative effect on welfare
- ▶ In either case, $R^d < 1/\beta$
 - Positive deposit premium

 positive marginal social value of deposits

- Assume $\lambda = 0$ (no bad risk-taking).
- ▶ Frisch elasticity ν_2 is key for welfare costs of capital requirements.
- \triangleright $\nu_2 \to \infty$: labor fully flexible, wage fixed
 - ▶ Increasing capital requirements has large negative effects on welfare
- \triangleright $\nu_2 \rightarrow 0$: labor fixed, wage fully flexible
 - Increasing capital requirements has no negative effect on welfare
- ▶ In either case, $R^d < 1/\beta$
 - ▶ Positive deposit premium ⇒ positive marginal social value of deposits
 - ▶ In contrast to theories with deposits in the utility function

- ▶ We propose a new channel:
 - Financial regulation affect risk-taking capacity of non-financial firms
 - ⇒ Optimal capital requirements should account for this channel

- ▶ We propose a new channel:
 - Financial regulation affect risk-taking capacity of non-financial firms
 - ⇒ Optimal capital requirements should account for this channel
- Work in progress: quantitative analysis

- ▶ We propose a new channel:
 - Financial regulation affect risk-taking capacity of non-financial firms
 - ⇒ Optimal capital requirements should account for this channel
- Work in progress: quantitative analysis
 - Embed this mechanism in a larger quantitative model
 - Bank equity and deposits are not the only savings instruments
 - More general aggregate shocks
 - Utility from deposits

- ▶ We propose a new channel:
 - Financial regulation affect risk-taking capacity of non-financial firms
 - ⇒ Optimal capital requirements should account for this channel
- Work in progress: quantitative analysis
 - Embed this mechanism in a larger quantitative model
 - ▶ Bank equity and deposits are not the only savings instruments
 - More general aggregate shocks
 - Utility from deposits
 - Time varying capital requirements
 - Banks' investment opportunities are time varying (Davydiuk, 2017)
 - Entrepreneurs' demand for savings is time varying (new)

- ▶ We propose a new channel:
 - Financial regulation affect risk-taking capacity of non-financial firms
 - ⇒ Optimal capital requirements should account for this channel
- Work in progress: quantitative analysis
 - Embed this mechanism in a larger quantitative model
 - Bank equity and deposits are not the only savings instruments
 - More general aggregate shocks
 - Utility from deposits
 - Time varying capital requirements
 - ▶ Banks' investment opportunities are time varying (Davydiuk, 2017)
 - Entrepreneurs' demand for savings is time varying (new)
- ▶ Only $\sim 50\%$ of deposits in the U.S. are insured.
 - Adds another channel: capital requirements *do* make agents' portfolios safer, in addition to the deposit insurance subsidy.

Numerical example: parameter values

Set Parameters					
Parameters	Value				
β	0.95				
ν_2	1				
$\frac{p_z}{\bar{k}}$	0.70				
\bar{k}	1				

Calibrated Parameters							
Parameters	Value	Target	Target Value				
A	0.135	Steady-State <i>c</i>	1				
σ	0.079	Banks Default Probability	10%				
$ u_1 $	1.038	Deposit Premium $\frac{1}{\beta} - R^d$	2%				

Government: tax rate

▶ Tax rate on wealth of entrepreneurs τ_{t+1} :

$$\tau_{t+1} = \frac{T_{t+1}}{\int \left[\left(z_{t+1}^{i} - w_{t} \right) I_{t}^{i} + R_{t}^{d} d_{t}^{i} + R_{t+1}^{E} n_{t}^{i} \right] di}$$

back

Basel III Capital Requirements

Aggregate capital ratios and (incremental) capital shortfalls

ab	le	2

	Fully implemented requirement, in per cent		Basel III capital ratios, in per cent		Risk-based capital shortfalls, in billions of euros ¹		Combined risk-based capital and leverage ratio shortfalls, in billions of euros ¹	
	Min	Target ²	Transitional	Fully phased-in ³	Min	Target ²	Min	Target ²
Group 1 banks								
CET1 capital	4.5	7.0-9.5	12.2	11.9	0.0	0.0	0.0	0.0
Tier 1 capital ⁴	6.0	8.5-11.0	13.4	12.9	0.0	1.4	0.0	1.4
Total capital ⁵	8.0	10.5-13.0	15.8	14.6	0.0	3.4	0.0	3.4
Sum					0.0	4.8	0.0	4.8
Of which: G-SIBs								
CET1 capital	4.5	8.0-9.5	12.1	11.8	0.0	0.0	0.0	0.0
Tier 1 capital ⁴	6.0	9.5-11.0	13.4	12.9	0.0	0.0	0.0	0.0
Total capital ⁵	8.0	11.5-13.0	15.8	14.7	0.0	0.9	0.0	0.9
Sum					0.0	0.9	0.0	0.9
Group 2 banks								
CET1 capital	4.5	7.0	13.8	13.4	0.0	0.0	0.0	0.0
Tier 1 capital ⁴	6.0	8.5	14.2	13.8	0.0	1.0	2.9	3.9
Total capital ⁵	8.0	10.5	16.4	15.4	0.0	4.0	0.0	4.0
Sum					0.0	5.0	2.9	7.9

Basel III Capital Ratios

Fully phased-in Basel III CET1, Tier 1 and total capital ratios

In per cent Table A.3

	Group 1 banks			Of which: G-SIBs			Group 2 banks		
	CET1	Tier 1	Total	CET1	Tier 1	Total	CET1	Tier 1	Total
Max	23.8	26.0	29.3	16.8	18.4	22.3	49.2	57.0	57.0
75th percentile	13.8	14.3	16.8	13.0	14.1	17.1	18.3	18.3	19.7
Median	12.1	13.0	14.5	11.8	13.1	15.0	13.9	14.1	15.6
25th percentile	10.9	11.6	13.1	10.9	12.0	13.5	11.4	11.9	13.0
Min	8.1	8.1	9.6	9.4	10.7	10.9	6.9	6.9	8.2
Weighted average	11.9	12.9	14.6	11.8	12.9	14.7	13.4	13.8	15.4

Source: Basel Committee on Banking Supervision.

Results (Increase DRS parameter α)

- ▶ Increase α until unconstrained capital ratio y = 2%.
- ▶ Match 1.7% crisis tax at $\gamma = 0.76$.

Results (Increase wage intercept ν_1)

- ▶ Increase ν_1 until deposit premium $\frac{1}{\beta} R^d = 50$ bps.
- ▶ Match 1.7% crisis tax at $\gamma = 0.7$.

Results (Increase wage intercept ν_1)

- ▶ Increase ν_1 until deposit premium $\frac{1}{\beta} R^d = 50$ bps.
- ▶ Match 1.7% crisis tax at $\gamma = 0.7$.

Numerical example (big shocks): parameter values

- $\nu_1 = 0.6612$
- A = 1.032
- $\nu_2 = 100$
- $\beta = 0.95$
- $p_c = 1\%$
- s = 8.9%
- $\gamma = 0.66$
- $\alpha = 0.99989$
- $z_{t+1}^i \in \{0, A\}, Pr(z_{t+1}^i = A) = 0.7$

Welfare with $\nu_2 = 100$

- ▶ With $\lambda = 0$, there is no benefit to capital requirements, only a cost.
- ightharpoonup With $\lambda > 0$, the cost is balanced against a reduced deadweight loss.

